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• Nerve growth factor in saliva (sNGF) has been shown to respond to stress.
• We investigated how acute sNGF responses relate to markers of resilience.
• People with positive stress appraisals showed stronger sNGF reactivity and recovery.
• Agency and well-being are also related to dynamic sNGF reactivity and recovery.
• The sNGF response to stress may help explain differences in resilience.
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Salivary nerve growth factor (sNGF) has recently been shown to respond to psychosocial stress, but little is
known about how individual differences in this neurotrophic marker relate to stress vulnerability vs. resilience.
This study followed up on these initial findings by examining sNGF responses to interpersonal stress in relation
to both well-being and state/trait factors that determine the way a person approaches and is impacted by stress.
Young adults (n=40) gave 5 saliva samples over the course of a laboratory session that involved an interpersonal
conflict stressor, and all sampleswere assayed for sNGF. Participants also completed self-reportmeasures of global
well-being, stress appraisals before and following the conflict, and agency. Greater sNGF reactivity to conflict relat-
ed to stronger appraisals of coping ability and agency. Post-conflict sNGF recovery related to lower anticipatory
stress appraisals, and to higher agency andwell-being. These results support the idea that dynamic sNGF responses
are adaptive. Implications for the potential role of the neurotrophic system in stress resilience are discussed.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Nerve growth factor measured in human saliva (sNGF) has recently
been shown to respond to acute psychosocial stress, highlighting a
neurotrophic component of the stress response system that may
complement the more well-known sympathetic branch of the auto-
nomic nervous system (ANS) and hypothalamic–pituitary–adrenal
(HPA) axis [21]. However, little is known about how individual dif-
ferences in neurotrophic response relate to stress vulnerability vs.
resilience. The current investigation takes a critical step toward de-
fining this system's adaptive value by relating young adults' sNGF re-
sponses to interpersonal stress to both well-being and state/trait
variables known to reduce the negative impacts of stress.
ugene, OR97403, United States.

.

Nerve growth factor is one of a larger class of neurotrophins that
regulate neural differentiation and growth/plasticity [24]. NGF is
expressed in both the brain and periphery, with the salivary glands
representing the largest source of circulating NGF in rodent models
[23]. To date, most of the evidence for NGF's acute stress-reactive
properties comes from mice, which demonstrate brain and blood in-
creases following social stress (e.g., [1,2,4]). The recent discovery
that NGF measured in saliva responds to psychosocial (interpersonal
conflict) stress, and that this response relates to both HPA axis and
ANS responses, has opened the door for investigation of sNGF as part
of the human stress response [21]. This initial study documented signif-
icant sNGF reactivity to a relationship conflict discussion, in contrast to
nonsignificant changes in sNGF across the same time period for a con-
trol group of subjects not exposed to conflict stress. It further revealed
significant associations between participants' sNGF response trajecto-
ries and both their cortisol (HPA marker) and salivary alpha-amylase
(sAA; ANS marker) responses across the session, helping to validate
this measure as part of a larger stress response. Finally, this research

http://crossmark.crossref.org/dialog/?doi=10.1016/j.physbeh.2014.02.034&domain=pdf
http://dx.doi.org/10.1016/j.physbeh.2014.02.034
mailto:hlaurent@uoregon.edu
Unlabelled image
http://dx.doi.org/10.1016/j.physbeh.2014.02.034
Unlabelled image
http://www.sciencedirect.com/science/journal/00319384


1 As reported previously [22], a control sample of 20 participants was recruited to give
saliva samples at the same times as study participants, but without undergoing a stress
task. Nonsignificant changes in control participants' sNGF suggested that therewere nodi-
urnal effects, at least in the late afternoon period during which the study occurred.
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related sNGF reactivity to lower levels of negative emotion when
confronting conflict stress, suggesting that it may be beneficial. The
present study follows up on these early findings in the same dataset,
moving from the basic question of whether sNGF responds to acute
stress to the question of why this response matters—in particular,
how does the sNGF response relate to more lasting markers of well-
being?

There is a body of research relating blood and/or brain NGF levels
to stress-related psychological difficulties, though these links are not
straightforward. A neurotrophic deficit has been implicated in de-
pression, which is reversed by successful antidepressant treatment
(e.g., [18,25,36,41]). At the same time, increased neurotrophin
(NGF and/or BDNF) levels were observed in animals subjected to
early stress that later showed depression-like behaviors [7,10,11].
It seems that NGF does not directly influencemood, but rather plasticity
and the ability to benefit from new learning experiences [9]. Humans in
anxiety-inducing situations including a first parachute jump and caring
for an ill spouse have also exhibited elevated blood NGF [3,15]. A study
showing higher NGF among people in love [12] suggests that NGF may
be increased by states of high arousal, rather than negative affect per se,
consistent with an alternate interpretation of the parachute situation as
inducing excitement (instead of or in addition to anxiety). Thus, there is
evidence that both elevated and diminished NGF could underlie differ-
ences in well-being, but no information as yet about relations with
acute stress responsiveness.

To understand how neurotrophic responses relate to stress adap-
tation, relations not only with the outcome of such adaptation (i.e.,
well-being), but also with individual difference factors driving adap-
tation, must be explored. Both state and trait differences in the ways
people approach stress are known to contribute to well-being, with
resilience depending on a host of cognitive and personality factors.
For example, appraising a stressor as non-threatening (low primary
appraisal) and oneself as having the power to control the situation
(high secondary appraisal) reduces distress and promotes positive
coping, which in turn protects against mental disorder [40]. At the
dispositional level, people higher in agency—i.e., instrumental personal-
ity characteristics related to mastery and a strong, independent self—
similarly show superior coping and mental health outcomes [16]. Al-
though these factors are known to impact other aspects of stress phys-
iology (i.e., the ANS and HPA axis; [13]; [42]; [37]), their role in
neurotrophic responses to stress is unknown.

The current study was designed to follow up on our initial discovery
that sNGF responds to psychosocial stress in humans with tests of
resilience-related individual differences in sNGF before and follow-
ing interpersonal conflict stress. In particular, we examined relations
between sNGF reactivity/recovery patterns and well-being, stress ap-
praisals, and agency, in the same sample of young adults we reported
on previously [21]. Based on indications from prior human and animal
research involving circulating NGF levels, we hypothesized that
resilience—evidenced by higher well-being and agency, as well as
lower primary and higher secondary stress appraisals—would be as-
sociated with greater sNGF reactivity and higher post-stress levels.
Absent previous research on post-stress dynamics, we made no hy-
potheses about sNGF recovery.

2. Method

2.1. Participants and procedures

Participants for this study were 40 (17 male, 23 female) healthy
young adults (M age = 21.56, SD = 5.89), drawn from a larger study
of romantic couples recruited from a departmental human subject
pool and community fliers. All participants gave informed consent
prior to completing the study, which was approved by the University
of Wyoming Institutional Review Board. During a two-hour laboratory
session, participants confronted a validated psychosocial stressor—
discussing an unresolved conflict with their romantic partner—known
to induce physiological (HPA) reactivity. In particular, the task was
modeled after the task found by Kiecolt-Glaser and colleagues (e.g.,
[20]) to elicit both subjective and physiological stress responses,
the magnitude and/or duration of which may vary according to indi-
vidual differences in psychosocial adjustment (i.e., negative emo-
tionality, attachment security, trauma symptoms—see [22,30,31]).
They also gave a series of saliva samples to index physiological stress
trajectories.

All sessions began at 4 pm to control for diurnal variations in
stress systems.1 Following a set of initial questions to determine
compliance with study conditions—i.e., no current illness, no
smoking or other drug use that day, no heavy exercise or brushing
teeth in the past 3 h, no eating/drinking in the past hour—participants
gave the first saliva sample (entry). The second sample, collected 20
min after receiving a vivid description of the conflict task and shortly
before the discussion, measured stress anticipation. Each partner nom-
inated anunresolved issue that had caused an argument or fight recent-
ly, and one was selected by coin toss. Participants were given 15min to
discuss and attempt to resolve the selected conflict. Three post-stress
samples were collected 10, 25, and 40 min after the conclusion of the
discussion. Whole unstimulated saliva samples were collected using
passive drool and stored at −20 °C prior to shipment on dry ice to
Salimetrics for assay.

2.2. Measures

2.2.1. sNGF
As detailed in [21], all saliva samples were assayed for NGF in

triplicate using a commercially available enzyme immunoassay kit
(Promega NGF Emax Immunoassay System Cat.# G7631; Madison,
WI) modified for use with saliva. The NGF salivary test method was
developed by Salimetrics (State College, PA) using the commercially
available Promega NGF Emax Immunoassay System. Coating buffers,
sample diluent and wash buffer were developed and optimized for
accurate and precise detection of NGF in saliva. The coating buffer
is comprised of 27 mM carbonate–bicarbonate. Sample diluent is
phosphate buffered saline with bovine serum albumin and a preser-
vative. The wash buffer is phosphate buffered saline with 0.05%
Tween-20.

Saliva samples with varying levels of NGF were used during vali-
dation to ensure accuracy and precision and lack of matrix effects.
Method accuracy was assessed by measuring the recovery of exoge-
nous NGF added to saliva, which was found to be 100.3% for recovery
of 30 pg/mL and 97.6% for recovery of 100 pg/mL. Intra-assay preci-
sion was 16.5% (134.5 pg/mL) and 12.6% (36.9 pg/mL) as deter-
mined by running 20 replicates within one plate. Inter-assay
precision was 11.9% (133.57 pg/mL) and 19% (20.98 pg/mL) as de-
termined by the mean of average results of 6 runs. Linearity of dilu-
tion was used to assess matrix effects from saliva. Admixtures of a
high (134.5 ng/mL) and low (37 pg/mL) NGF saliva samples were
prepared and tested according to NCCLSEP6-A. The average recovery
from across the range was 102.7% with a range of 82.3% to 127.2%. All
saliva samples were assayed in the Salimetrics CLIA approved testing
facility with trained operators and technicians. Saliva samples were
tested for NGF in triplicate after being diluted 1:4 prior to testing.
The assay standard curve range is 3.9 to 250 pg/mL. For this investi-
gation, five samples were obtained from each subject and all were
run on the same assay plate in triplicate.

Associations with salivary flow rate (mL/min) were nonsignificant,
so flow rate was not included in model testing. sNGF values above the
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assay's sensitivity range (17%) were assigned to the upper limit of
the range (1000 pg/ml); deleting these cases yielded essentially un-
changed results. In the absence of substantial skewness (b1.5), raw
scores were used in analyses. Within-person stability of measured
sNGF was high (M correlation = .89, ICC = .90). Fig. 1 shows sample
means and standard errors for sNGF across samples.

2.2.2. Resilience measures
The World Health Organization Well-Being Scale (WHO-WB; [6])

assessed participants' overall well-being (α = .78). Primary and sec-
ondary stress appraisalswere assessedwith scales used in previous psy-
chosocial stress research. Primary appraisals tapped perceptions of the
stressor as threatening and challenging. Secondary appraisals tapped
perceived ability to cope with the stressor and control over the situa-
tion. Directly before the conflict task, participants completed the Prima-
ry Appraisal Secondary Appraisal (PASA; [14]) scale, and directly
following the task they completed the Visual Analog Scales (VAS; see
[14]). Each of these measures yielded separate scores for primary and
secondary stress appraisals (α's = .80 and .64 pre-task, .83 and .77
post-task). Finally, the Personal Attributes Questionnaire (PAQ; [38])
measured participants' self-endorsement of agentic qualities on a 5-
point bipolar scale (e.g., “stands up well under pressure” vs. “goes to
pieces under pressure”; α = .68).

2.3. Analytic strategy

Hierarchical linear modeling (HLM; [32]) was used to model sNGF
response trajectories. This approach separates within-person variability
in sNGF over time (Level 1) from between-person differences in sNGF
response (Level 2). A piecewise growth model estimated each
participant's sNGF reactivity slope (from samples 1 to 3), post-stress
sNGF level (sample 3 intercept), and recovery slope (from sample
3–5) at Level 1. At Level 2, participant resilience characteristics were
used to predict differences in each of these response components (i.e.,
slopes and intercepts).

3. Results

3.1. Baseline model

The baseline model containing no predictors demonstrated a sig-
nificant sNGF reactivity slope (β = .13, p = .001), but a nonsignifi-
cant recovery slope (β = .003, ns). This means that, overall,
participants tended to show a rise in sNGF from study entry to the
first post-conflict sample, with no change in sNGF during the recovery
period. At the same time, significant between-person variability in
each of these parameters (χ2[38] = 69.86–943.26, all p's ≤ .001) sug-
gested individual differences in trajectories that could be explained by
adding Level 2 predictors. Because males showed evidence of higher
post-stress sNGF levels than females (β = .30, p = .063), consistent
Fig. 1. Observed sNGF levels across samples (bars represent standard errors).
with rodent NGF and emerging human sNGF research [33], sex was in-
cluded as a control variable in further analyses.

3.2. Explanatory models

Resilience-related predictors were added in a series of models
addressing (a) well-being, (b) state factors (stress appraisals), and
(c) trait factors (agency). Global well-being was associated with
sNGF recovery slopes; participants reporting greater well-being
showed a post-task decline in sNGF (Table 1, panel A). This model ex-
plained 16.3% of the variance in sNGF recovery slopes. Pre-task primary
stress appraisals predicted sNGF recovery slopes, and post-task second-
ary stress appraisals predicted sNGF reactivity slopes (Table 1, panel B).
Participants who anticipated the conflict task as more threatening/
challenging showed a continued increase in sNGF after the conflict
task was over. Participants who showed a greater task-related increase
in sNGF had a higher assessment of their coping abilities during the task.
These models explained 29.8% of the variance in sNGF reactivity slopes,
and 33.2% of the variance in recovery slopes, respectively. Finally, agen-
cy was associated with a stronger task-related increase and greater
post-task decrease in sNGF (Table 1, panel C). This model explained
28.6% of the variance in sNGF reactivity, and 5.5% of the variance in re-
covery slopes.

4. Discussion

This study adds an important piece to the foundation of sNGF stress
research by relating individual differences in sNGF response to acute
stress to markers of psychological resilience. In particular, the current
results support the value of a dynamic neurotrophic response to psy-
chosocial stress. Greater sNGF reactivity was associated with a sense
of successful coping and agency, and greater recovery was associated
with global well-being and agency. Conversely, failure to recover (i.e.,
an ongoing increase in sNGF) was associated with negative anticipation
of stress. Below, we considerwhat these findingsmean in the context of
previous NGF research and propose next steps in the investigation of
neurotrophic stress responses.

In line with previous research relating neurotrophins to emotions
and mental health, we found an association between sNGF and well-
being. The present results suggest that an adaptive sNGF response is
not necessarily characterized by higher or lower absolute levels, but
rather by the dynamics of stress-related reactivity and recovery.
Multiple measures of salivary NGF release before and after the stress
task allowed us to detect these effects, which paralleled findings
based on other stress system outputs such as cortisol—i.e., a healthy
response includes both task-related reactivity and timely post-task
recovery [34]. ElevatedNGF following early life stress has been proposed
to shape later neurobiological vulnerability to stress and disorder [10],
and an efficient recovery mechanism may head off such detrimental
stress-related remodeling. More broadly, the sNGF-well-being link de-
tected here supports the proposal that an acute neurotrophic response
to stress has an adaptive function.
Table 1
Explanatory models for sNGF response trajectories.

Model predictors Reactivity slope Post-task level Recovery slope

β p β p β p

A. Well-being .044 .157 −.115 .474 −.075 .046
B. Stress appraisals
Pre-task primary −.022 .512 −.086 .624 .091 .024
Pre-task secondary .010 .760 −.107 .517 .066 .075
Post-task primary .011 .731 −.037 .806 .045 .373
Post-task secondary .042 .020 −.027 .825 −.002 .921

C. Agency .061 .023 .024 .856 −.046 .047

Note. Significant effects (p b .05) highlighted in bold.

image of Fig.�1
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Attention to stress-related cognitions and personality attributes
aids in understanding the short- and long-term processes giving
rise to adaptive stress responding. Appraisals immediately preceding
and following the conflict task were related to different aspects of
the sNGF response. Whereas sNGF reactivity appeared to enable a
better sense of coping in the actual conflict, cognitive anticipation
of stress created ongoing reactivity after the task was completed.
To be confident about this particular sequence of effects, replication
and more fine-grained investigation of forward- and backward-
lagged relations between stress-related cognitions and sNGF are
needed. Still, these results suggest that sNGF response can be influ-
enced for better or worse by the way a person thinks about a given
stressor and his/her ability to copewith it. The fact that such coping ap-
praisals explained a sizeable proportion of the variance in stress re-
sponses has important practical implications. Specifically, cognitive
interventions that target both exaggerated stress anticipation and
weak secondary appraisals following the stressor could be used to
build stress resilience.

At the level of stable dispositional characteristics, similarly, more
resilient (agentic) participants were characterized by strong sNGF
reactivity and recovery. The current findings offer a new potential
explanatory mechanism for well-established links between agency
and mental health; the self-sufficient, mastery-oriented qualities com-
prising agency may promote (and/or be promoted by) adaptive neuro-
trophic responses to stress. As suggested by research documenting NGF
increases in patients treated for depression (e.g., [17,18]), maintaining
mental health in the face of stressmay depend on the ability to generate
an adequate neurotrophic response. At the same time, the ability to re-
duce neurotrophic activation following stress appears important for
maintaining well-being over the long-term. Taken together, these re-
sults provide initial support for the idea that the neurotrophic response
measured by salivary NGF constitutes a biological marker of resilience.

Notably, this study related sNGF to the presence of positive psycho-
logical characteristics (i.e., well-being, agency, coping appraisals) and
not simply the absence of negative characteristics (i.e., threat ap-
praisals). Although the concept of resilience itself implies a positive ori-
entation, much of the research on the topic has characterized resilience
through the absence of mental disorder following stress. In keeping
with this operationalization, efforts to understand neurobiological
mechanisms in resilience have focused largely on control of negative
emotion and associated physiological stress responses (see [35] for a re-
cent review). However, findings such as those reported here help shift
the focus to generating and constructively using a (neurotrophic) com-
ponent of the stress response to support adaptive functioning.

Measurement of salivary NGF in humans is a recent innovation,
and we are still at the early stages of understanding what variation
in this measure does and does not mean. Based on both this sample
and (as yet unpublished) work in several other human samples, it
appears that sNGF responds to acute psychosocial stress, that this re-
sponse does not represent diurnal variation, and that individual dif-
ferences in sNGF response relate to psychological adjustment. What
we do not yet know is how changes in NGF in saliva relate to changes
in other physiological systems that could impact psychological function.
Experimental research in animals suggests possible central and periph-
eral routes of neurotrophic influence. NGF release in the brain aids in
neural plasticity and protection/repair processes, and circulating NGF
modifies stress responding via the size and activity of the adrenal
gland [5,10,29]. Thus, NGF reactivity may buffer critical brain areas
such as the hippocampus from stress-related increases in cortisol,
whereas rapid recovery prevents neural/neuroendocrine stress sen-
sitization from taking place as suggested above. The buffering effect
of NGF may also involve the release of dehydroepiandrosterone sul-
fate (DHEAS), an adrenal androgen with antagonistic effects against
cortisol, whose levels have been positively associated with sNGF at
rest and under stress ([39]; Taylor et al., submitted). Controlled studies
in humans and animals probing associations between salivary NGF and
both blood and brain levels during stress exposure, including possible
lagged effects and associationswith DHEAS, will ultimately help to clar-
ify these mechanisms. In the near term, further study of the human
sNGF response and how it relates to different domains of psychological
function will help to define its role in stress adaptation.

Future research should explore whether sNGF reactivity occurs,
and whether similar responses can be considered adaptive, with
different types of stressors (i.e., performance tasks, more severe/
extended psychosocial challenge). Our ability to detect further ef-
fects, including associations between resilience variables and sNGF
levels (as opposed to reactivity/recovery slopes), was likely limited
by the modest sample size and resulting power limitations in this
study. We were also restricted in the measurement of resilience
(i.e., to a global well-being measure and several state/trait predic-
tors), precluding strong statements about impacts on mental health
vs. disorder. Clinical samples involving people suffering from past
and/or present depression and anxiety should be studied to further
define mental health implications of acute sNGF response patterns.
Longitudinal research on stress exposure during critical develop-
mental periods and both immediate and long-term neurotrophic
consequences would further help to define paths to stress vulnera-
bility vs. resilience.

The Promega assay used in this study to estimate sNGF is the cur-
rent state of the art, selected because it is the most commonly
employed assay to date for measuring NGF in saliva samples (e.g.,
[19,28,39]). Our subsequent work with this assay reveals an issue
overlooked by prior research—the antibody used in this assay system
cross-links with sIgA. We have reason to believe that the current re-
sults were not driven by this immune system marker. In particular,
previous research has demonstrated a divergence of sIgA from corti-
sol responses to psychosocial stress (e.g., [8,26,27]). By contrast, the
sNGF measure in this study showed concordance with cortisol
responses, as would be expected based on known HPA–NGF associa-
tions (see [21] for further detail on sNGF-cortisol response coordina-
tion in this sample). Still, to fully explore the meaning of variation in
sNGF, the next generation of research will need to improve upon this
measurement strategy. Finally, as noted above, knowledge of mech-
anisms by which sNGF release may impact neural and neuroendo-
crine systems in humans is very limited, and research addressing
basic questions about the nature and timing of connections across
salivary and blood levels is needed.

Although further basic and applied researchwill be needed to follow
up on these findings, the present study takes an important step inmark-
ing out bothwhat an adaptive response of this novel neurotrophic stress
marker looks like, and what gives rise to it. At both a theoretical and a
practical level, sNGF promises to expand our understanding of how
stress-responsive biological systems contribute to resilience.
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